Binomial Heap 前言: 均攤 (Amortization) 介紹 在開始介紹 Binomial Heap 前,我們先來看看 Heap (Min Heap or Max Heap) 的 operation 時間複雜度: insert: O(log n) remove/delete: O(log n) 思考: 我們能不能減少 insert 的時間複雜度 -> O(1),但一
Heap Tree 用 Tree 了解他,用 Array 實作相關的 operation 從 Binray Tree 的觀念出發,首先將原本 Tree 的 node 加上 Key (檢索鍵),如下: key: priority or weights or others data: original data (like: todo) 有分: Min Heap(最小堆積)
Binary Expression Tree Each internal node corresponds to the operator and each leaf node corresponds to the operand. Example: A expression tree for 3 * (5+7) would be: * / \ 3 + / \ 5 7 prefix: (* 3 (+ 5 7)) -> mul(3, plus(5, 7)) infix: 3 * (5+7) -> 四則運算 postfix: 3 5 7 + * -> 電腦上實際想要
Binary Tree (二元樹) 每個 node 最多就是只有 2 個 child node,且稱兩個 child node 為 left child 和 right child。 A binary tree is a tree data structure in which each node has at most two children, which are referred to as the left child and the right child.
Tree (樹) 樹就是Hierarchical Access,樹上的 node 沒有 child 數量限制,如下所示: Each node of the tree will have a root value and a list of references to other nodes which are called child nodes. 其他相關